

Success in Higher Education

ICT102 INTRODUCTION TO PROGRAMMING T324 Brief

All information in the Subject Outline is correct at the time of approval. KOI reserves the right to make changes to the Subject Outline if they become necessary. Any changes require the approval of the KOI Academic Board and will be formally advised to those students who may be affected by email and via Moodle.

Information contained within this Subject Outline applies to students enrolled in the trimester as indicated.

1. General Information

1.1 Administrative Details

Associated HE Award(s)	Duration	Level	Subject Coordinator
Bachelor of Information Technology (BIT)	1 trimester	Level 1	Apel Mahmud apel.mahmud@koi.edu.au P: +61 (2) 9283 3583 L: Level 1-2, 17 O'Connell St. Consultation: via Moodle or by appointment.

1.2 Core / Elective

Core subject for BIT

1.3 Subject Weighting

Indicated below is the weighting of this subject and the total course points.

Subject Credit Points	Total Course Credit Points
4	BIT (96 Credit Points)

1.4 Student Workload

The expected student workload per week for this subject is indicated below.

No. Timetabled Hours/Week*	No. Personal Study Hours/Week**	Total Workload Hours/W eek***	
4 hours/week (2 hour Lecture + 2 hour Tutorial)	6 hours/week	10 hours/week	

^{*} Total time spent per week at lectures and tutorials

1.5 Mode of Delivery arrangements).

Classes will be face-to-face or hybrid. Certain classes will be online (e.g., special

ABN: 72 132 629 979

1.6 Pre-requisites

Nil

^{**} Total time students are expected to spend per week in studying and completing assignments.

^{***} That is, * + ** = workload hours.

Success in Higher Education

1.7 General Study and Resource Requirements

- Dedicated computer laboratories are available for student use. Normally, tutorial classes are conducted
 in the computer laboratories.
- Students are expected to attend classes with the requisite textbook and must read specific chapters
 prior to each tutorial. This will allow them to actively take part in discussions. Students should have
 elementary skills in both word processing and electronic spreadsheet software, such as OFFICE 365 or
 MS Word and MS Excel.
- Computers and WIFI facilities are extensively available for student use throughout KOI. Students are encouraged to make use of the campus Library for reference materials.
- Students will require access to the internet and email. Where students use their own computers, they should have internet access. KOI will provide access to required software.

Resource requirements specific to this subject: Students will need computers with relevant software installed to complete their tutorial exercises. If you have your own computer, it should have internet access and the required software installed. Students are encouraged to make use of the campus library for reference materials. Software Required: Sun Java 8 JDK and NetBeans IDE, Eclipse, Office 365, MS Imagine.

1.8 Academic Advising

Academic advising is available to students throughout teaching periods including the exam weeks. As well as requesting help during scheduled class times, students have the following options:

- Consultation times: A list of consultation hours is provided on the homepage of Moodle where appointments can be booked.
- Subject coordinator: Subject coordinators are available for contact via email. The email address of the subject coordinator is provided at the top of this subject outline.
- Academic staff: Lecturers and Tutors provide their contact details in Moodle for the specific subject. In most
 cases, this will be via email. Some subjects may also provide a discussion forum where questions can be
 raised.
- Head of Program: The Head of Program is available to all students in the program if they need advice about their studies and KOI procedures.
- Vice President (Academic): The Vice President (Academic) will assist students to resolve complex issues (but may refer students to the relevant lecturers for detailed academic advice).

2 Academic Details

2.1 Overview of the Subject

This subject provides an introduction to programming and the fundamental principles of programming using objects. It utilises the Java programming language and covers programming concepts such as data types, control structures, strings, files, input/output and an introduction to classes, objects and programming methods. At the end of this subject students will have an understanding of fundamental computational concepts along with a range of problem-solving techniques using the Java programming language.

2.2 Graduate Attributes for Undergraduate Courses

Graduates of Bachelor courses from King's Own Institute (KOI) will achieve the graduate attributes expected under the Australian Qualifications Framework (2nd edition, January 2013). Graduates at this level will be able to apply a broad and coherent body of knowledge from their major area of study in a range of contexts for professional practice or scholarship and as a pathway for further learning.

ABN: 72 132 629 979

King's Own Institute's generic graduate attributes for a bachelor's level degree are summarised below:

Success in Higher Education

	KOI Bachelor Degree Graduate Attributes	Detailed Description
	Knowledge	Current, comprehensive, and coherent and connected knowledge
	Critical Thinking	Critical thinking and creative skills to analyse and synthesise information and evaluate new problems
26	Communication	Communication skills for effective reading, writing, listening and presenting in varied modes and contexts and for transferring knowledge and skills to a variety of audiences
	Information Literacy	Information and technological skills for accessing, evaluating, managing and using information professionally
A Y	Problem Solving Skills	Skills to apply logical and creative thinking to solve problems and evaluate solutions
	Ethical and Cultural Sensitivity	Appreciation of ethical principles, cultural sensitivity and social responsibility, both personally and professionally
	Leadership and Teamwork	Leadership and teamwork skills to collaborate, inspire colleagues and manage responsibly with positive results
	Professional Skills	Professional skills to exercise judgement in planning, problem solving and decision making

Across the course, these skills are developed progressively at three levels:

- Level 1 Foundation Students learn the basic skills, theories and techniques of the subject and apply them in basic, standalone contexts.
- o **Level 2 Intermediate** Students further develop the skills, theories and techniques of the subject and apply them in more complex contexts, and begin to integrate this application with other subjects.
- Level 3 Advanced Students demonstrate an ability to plan, research and apply the skills, theories
 and techniques of the subject in complex situations, integrating the subject content with a range of
 other subject disciplines within the context of the course.

2.3 Subject Learning Outcomes

This is a Level 1 subject.

On successful completion of this subject, students should be able to:

Subject Learning Outcomes	Contribution to Graduate Attributes
a) Apply general programming concepts and good practices in programming	A → → → ×
b) Construct, test and debug simple practical programs using the Java language	₩ A B D - Y
c) Apply exception handling techniques	
d) Develop small applications using problem solving and critical thinking skills and programming knowledge	A

Success in Higher Education

2.4 Subject Content and Structure

Below are details of the subject content and how it is structured, including specific topics covered in lectures and tutorials. Reading refers to the text unless otherwise indicated.

Weekly Planner:

Week (beginning)	Topic covered in each week's lecture	Reading(s)	Expected work as listed in Moodle
1 28 Oct	Introduction to programming and Java language	Chapter 1	Complete tutorial, end-of- chapter exercises and Introduction to NetBeans IDE environment. Formative not graded.
2 04 Nov	Java language fundamentals Java I/O, data types and operators	Chapter 2	Complete tutorial, end-of-chapter exercises. Run Java programs using data types and operators. Grade (1%).
3 11 Nov	Decision structures	Chapter 3	Complete tutorial, end-of-chapter exercise. Java programs using different IF-ELSE Structures. Grade (1%).
4 18 Nov	Loops	Chapter 4	Execute Java programs using different types of loops Grade (1%).
5 25 Nov	String handling	Chapter 9	Complete tutorial, end-of-chapter exercise and execute Java programs using String manipulations. Grade (1%). Assessment 2: Complete Moodle Quiz Summative worth 10%
6 02 Dec	Arrays	Chapter 7	Execute Java programs using two dimensional arrays. Grade (1%).
7 09 Dec	List and array list	Chapter 7	Complete tutorial, end-of- chapter exercise and work on Java programs using List and array list. Grade (1%).
8 16 Dec	Introduction to classes and methods	Chapters 5, 6	Complete tutorial, end-of-chapter programming exercises on classes and methods. Grade (1%). Assessment 3: Complete Moodle Quiz Summative worth 20%

Success in Higher Education

Week (beginning)	Topic covered in each week's lecture	Reading(s)	Expected work as listed in Moodle	
9 06 Jan	Use of classes and methods	Chapters 5, 6	Complete tutorial, end-of- chapter exercise on classes and methods. Grade (1%).	
10 13 Jan	Files I/O and streams	Chapters 4, 11	Execute Java programs using File I/O streams. Grade (1%). Assessment 4: Practical Assignment due Summative worth 15%	
11 20 Jan	Debugging and exception handling	Chapters 11	Complete tutorial, end-of- chapter exercise on Exception handling and debugging. Grade (1%). Revision	
12 28 (Tue) Jan	Revision & preparation for final exam	All subject material	Revision Assessment 5 due Summative worth 35%	
13 03 Feb	Study Review Week and Fina	al Exam Week		
14 10 Feb	Examinations Continuing students - enrolments for T125 open		Please see exam timetable for exam date, time and location	
15 17 Feb	Student Vacation begins New students - enrolments for T125 open			
16 24 Feb	information.Certification of Grades	about the dates will t	s 2.6 and 3.2 below for relevant be provided at a later date	
T125 3 Mar 2025				
1 03 Mar	Week 1 of classes for T125			

Success in Higher Education

2.5 Teaching Methods/Strategies

Briefly described below are the teaching methods/strategies used in this subject:

Lectures (2 hours/week) are conducted in seminar style and address the subject content, provide motivation and context and draw on the students' experience and preparatory reading.

Tutorials (2 hours/week) include class discussion of case studies and research papers, practice sets and problem-solving and syndicate work on group projects. Tutorials often include group exercises and so contribute to the development of teamwork skills and cultural understanding. Tutorial participation is an essential component of the subject and contributes to the development of many of the graduate attributes (see section 2.2 above). Tutorial participation contributes towards the assessment in many subjects (see details in Section 3.1 for this subject). Supplementary tutorial material such as case studies, recommended readings, review questions etc. will be made available each week in Moodle.

Online teaching resources include class materials, readings, model answers to assignments and exercises and discussion boards. All online materials for this subject as provided by KOI will be found in the Moodle page for this subject. Students should access Moodle regularly as material may be updated at any time during the trimester

Other contact - academic staff may also contact students either via Moodle messaging, or via email to the email address provided to KOI on enrolment

2.6 Student Assessment

Assessment is designed to encourage effective student learning and enable students to develop and demonstrate the skills and knowledge identified in the subject learning outcomes. Assessment tasks during the first half of the study period are usually intended to maximise the developmental function of assessment (formative assessment). These assessment tasks include weekly tutorial exercises (as indicated in the weekly planner) and low stakes graded assessment (as shown in the graded assessment table). The major assessment tasks where students demonstrate their knowledge and skills (summative assessment) generally occur later in the study period. These are the major graded assessment items shown in the graded assessment table.

Final grades are awarded by the Board of Examiners in accordance with KOI's Assessment and Assessment Appeals Policy. The definitions and guidelines for the awarding of final grades within the BIT degree are:

HD High distinction (85-100%) an outstanding level of achievement in relation to the assessment process.

DI Distinction (75-84%) a high level of achievement in relation to the assessment process.

CR Credit (65-74%) a better than satisfactory level of achievement in relation to the assessment process.

P Pass (50-64%) a satisfactory level of achievement in relation to the assessment process.

F Fail (0-49%) an unsatisfactory level of achievement in relation to the assessment process.

FW This grade will be assigned when a student did not submit any of the compulsory assessment items.

Success in Higher Education

Provided below is a schedule of formal assessment tasks and major examinations for the subject.

Assessment Type	When assessed	Weighting	Learning Outcomes Assessed
Assessment 1: Weekly tutorial participation	Weeks 2 - 11	20%	a, b, c
Assessment 2: MCQ Quiz A (1 hour)	Week 5	10%	а
Assessment 3: MCQ Quiz B (1 hour)	Week 8	20%	b
Assessment 4: Practical assignment	Week 10	15%	c, d
Assessment 5: Individual Assessment	Week 12	35%	a, b, c, d

Requirements to Pass the Subject:

To gain a pass or better in this subject, students must gain a *minimum of 50%* of the total available subject marks.

2.7 Prescribed and Recommended Readings

Provided below, in formal reference format, is a list of the prescribed and recommended readings.

Prescribed Text:

Gaddis, T., 2021, Starting Out with Java: From Control Structures through Objects, 8th ed., Pearson Publications.

Recommended Readings:

Farrell, J. 2019, Java programming, 9th edn, Cengage Learning, Boston, MA.

Horstmann, C.S., 1959 2019, Core Java: Volume I—Fundamentals, 11th edn, Pearson, Boston, Mass.

TSIOTRAS, D. & XINOGALOS, S. 2021, "Investigating the Perceived Player Experience and Short-term Learning of the Text-based Java Programming Serious Game "Rise of the Java Emperor", *Informatics in education*, vol. 20, no. 1, pp. 153-170.

Suggested Conference/ Journal Articles:

Ling HC, Hsiao KL, Hsu WC. Can Students' Computer Programming Learning Motivation and Effectiveness Be Enhanced by Learning Python Language? A Multi-Group Analysis. Front Psychol. 2021 Jan 21;11:600814. doi: 10.3389/fpsyg.2020.600814. PMID: 33584436; PMCID: PMC7873915.

Weill-Tessier, P., Costache, A. L., & Brown, N. C. (2021). Usage of the java language by novices over time: Implications for tool and language design. Proceedings of the 52nd ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/3408877.3432408

Success in Higher Education

Martinez, Desiree & Remegio, Axl & Lincopinis, Darllaine. (2023). A Review on Java Programming Language.

Abdulkareem Hamaamin, R., Mohammed Amin Ali, O., & Wahhab Kareem, S. (2024). Java programming language: Time permanence comparison with other languages: A Review. ITM Web of Conferences, 64, 01012. https://doi.org/10.1051/itmconf/20246401012

Online Resources:

https://www.w3schools.com/java/default.asp

https://www.linkedin.com/learning/java-essential-training-for-students"https://www.linkedin.com/learning/java-essential-training-for-students

https://www.tutorialspoint.com/java/index.htm"https://www.tutorialspoint.com/java/index.htm https://www.w3schools.com/java/"https://www.w3schools.com/java/

References available from EBSCOhost research databases:

ACM Transactions on Computer Systems

ACM Transactions On Programming Languages & Systems

Recommended references:

Journal of Functional and Logic Programming Journal of Functional Programming International Journal of Parallel Programming

Conference/ Journal Articles:

Students are encouraged to read peer reviewed journal articles and conference papers. Google Scholar provides a simple way to broadly search for scholarly literature. From one place, you can search across many disciplines and sources: articles, theses, books, abstracts and court opinions, from academic publishers, professional societies, online repositories, universities and other web sites.

Useful Websites:

The following websites are useful sources covering a range of information relevant to this subject. Students are also expected to use the library and the internet.

ABN: 72 132 629 979

http://java.sun.com/docs/codeconv http://java.sun.com/docs/books/tutorial/index.html

http://codingbat.com/

http://www.tutorialspoint.com/java